II Year - II Semester		L	Т	Р	С
II Tear - II Semester		4	0	0	3
HYDRAULICS AND HYDRAULIC MACHINERY					

Course Learning Objectives:

- To study about uniform and non uniform flows in open channel and also to learn about the characteristics of hydraulic jump
- To introduce dimensional analysis for fluid flow problems
- To understand the working principles of various types of hydraulic machines and Pumps.

Course Outcomes:

Upon successful completion of this course the students will be able to:

- Solve uniform and non uniform open channel flow problems.
- Apply the principals of dimensional analysis and similitude in hydraulic model testing.
- Understand the working principles of various hydraulic machineries and pumps.

Syllabus:

UNIT – I UNIFORM FLOW IN OPEN CHANNELS:

Types of channels –Types of flows - Velocity distribution – Energy and momentum correction factors – Chezy's, and Manning's formulae for uniform flow – Most Economical sections, Critical flow: Specific energy-critical depth – computation of critical depth

UNIT II NON-UNIFORM FLOW IN OPEN CHANNELS: Steady Gradually Varied flow-Dynamic equation, Mild, Critical, Steep, horizontal and adverse slopes-surface profilesdirect step method- Rapidly varied flow, hydraulic jump, energy dissipation.

UNIT – III HYDRAULIC SIMILITUDE: Dimensional analysis-Rayleigh's method and Buckingham's pi theorem-study of Hydraulic models – Geometric, kinematic and dynamic similarities-dimensionless numbers – model and prototype relations.

UNIT – IV BASICS OF TURBO MACHINERY: Hydrodynamic force of jets on stationary and moving flat , inclined and curved vanes, jet striking centrally and at tip, velocity triangles at inlet and outlet, expressions for work done and efficiency-Angular momentum principle.

UNIT – V HYDRAULIC TURBINES – I: Layout of a typical Hydropower installation – Heads and efficiencies - classification of turbines. Pelton wheel - Francis turbine - Kaplan turbine - working, working proportions, velocity diagram, work done and efficiency, hydraulic design, draft tube – theory and efficiency. Governing of turbines-surge tanks-unit and specific quantities, selection of turbines, performance characteristics-geometric similarity-cavitation.

UNIT – VI CENTRAIFUGAL-PUMPS: Pump installation details-classification-work done- Manometric head-minimum starting speed-losses and efficiencies-specific speed, multistage pumps-pumps in parallel and series - performance of pumps-characteristic curves-NPSH- Cavitation.

RECIPROCATING PUMPS: Introduction, classification, components, working, discharge, indicator diagram, work done and slip.

Text Books:

- 1. Open Channel flow, K. Subramanya, Tata McGraw Hill Publishers
- 2. A text of Fluid mechanics and hydraulic machines, R. K. Bansal, Laxmi Publications New Delhi
- 3. Fluid Mechanics, Modi and Seth, Standard book house.

References:

- 1. Fluid Flow in Pipes and Channels, G.L. Asawa, CBS
- 2. Fluid Mechanics and Machinery, C.S.P. OJHA, R. BERNDTSSON and P.N. Chandramouli, Oxford Higher Education.
- 3. Fluid Mechanics and Machinery, Md. Kaleem Khan, Oxford Higher Education.